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Abstract. We deal with intrinsic homotopy and homology theories for simplicial
complexes and directed simplicial complexes.

Some applications are aimed at image analysis in metric spaces and have
connections with digital topology and mathematical morphology; the directed
version is applied to directed images and mathematical models of concurrency.
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1. Topological spaces, homotopy and homology // I mages.

Topological Models for images
- topological space X

Tools from classical Algebraic Topology

o (X, Xo): the fundamental group of X, a Xoe X

o IIy(X): thefundamental groupoid of X

e Hy(X): the (singular) homology group of X, of degree 1

Applications to Images

"continuous image" X c R? "discrete image" X'=X n (pZ)?
(scanning at resolution p = 1/2)
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fig. (a) fig. (b)
Calculations
- TC]_(X,X(J) ~ Zx*xZ — TE]_(X', Xo) =0
- HX) = 2@ Z - H(X) =0
Comments

- infig. (), homotopy and homology detect two "holes" (islands, basins,...)
* but: they ignore metric aspects
e but: in fig. (b), they give trivia information.



2. Metric spaces and simplicial complexes,
combinatorial homotopy and homology

Metric Models for images
- metric space X c R? (representing an image)
Rz dix,y) = Xi—=Vy1| Vv X2 =V, (leo-metric, or product metric)

Tools from Combinatorial Algebraic Topology

homotopy and homology at resolution € (0<e < o)

t.X: simplicial complex & < X islinked iff: finite & diam(§) <e

apath in tX "is' afinite sequence (&,... &) with: d(a, a.1) <€

of simplicial complexes;
in P2X; X — PY
. ;R is contractible, by atelescopic homotopy

o m§(X, Xo) = mi(teX, Xo): thefundamental group of X at X,, at resolution €
o TI§(X) = IIy(t.X): the fundamental groupoid of X, at resolution &
o H(X) = Hy(t:X): the (singular) 1-homology group of X, at resolution e.

References for these tools (classical or new)
- Edge-path groupoid TT,(K) of asimplicial complex: Spanier [SP], 3.6
- Homology groups H,(K) of asimplicial complex: [Sp], ch. 4; [HW], ch. 2

- Higher homotopy groups n,(K) of a (pointed) ssmplicial complex: [G1]
- intrinsic calculation of T1,(K), my(K),
by a"van Kampen" theorem and study of homotopies. [G1]

- Higher homotopy groupoids IT,(K) of asimplicial set: [G3]
Il,: 'Smp = n-Gpd : M, I1, — M,

[T, preserves all colimits (strong van Kampen property).



3.

Applications to Images

R2: diX,y) = X1 - Y1V X2 - yq

"continuous image" X c R?
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- 7. Z (0<e<l 2<e<3)
Z*Z (1<e<2)
{*} B<e<w)
Comments

- atresolution 0 <e<1: onesinglebasin (or island...)

(leo-metric, or product metric)

"discrete image" X'=X n (pZ)?
(scanning at resolution p = 1/,)
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fig. (b)
same results, provided € >p =1/

(BUT: {*} for €<p)

(provided e>p, for (b))

1<e<2 twobasins A, C connected by a bridgeable channel B

(or two islands connected by an isthmus, etc.)

(B can be jumped over by paths)

2<e<3: onebasin A with anegligible appendix

e > 3: norelevant basin at all.

The choice of the resolution(s) of interest may be dictated by applications (e.g.: thresholds)
but the finest description has been obtained at an intermediate resolution (1<e<2).

The whole analysis, varying e, isof interest. Critical values: O, 1, 2, 3.



4. Applications to Images, continued

Rz dix,y) = [Xy-Vyi|lVv X2 - y2l (loo-metric, or product metric)
10° 10"
2 2 -
4 12 4 12 20
- m: Z (1<e<28), Z+xZ (1<e<8)
{«} (£28), {«} (289,
107 ees, eee, :
: ot . o
| - 5 + -
2 TI——|—.| |.—|—.—.— 1= = ——+——|————|————|——>
79 4 12 20
— m§: Z (1<e<?2), Z*7Z (2<¢e<8), {*} (e=8).
Comments

e a small resolution is sensitive to "errors"
— the"best" description is obtained at an intermediate resolution (2 <& <8)



5. Directed metric spaces, directed homotopy

Metric Models for directed images
- adirected metric space X (= aLawvere generalised metric space [La])

d-metric &: XxX — [0, o] o(x,X) =0, 0d(x,y) +0(y,2) = o(X, 2)
(X isasmall category enriched over a suitable monoidal category with objects t e [0, =])

F.W. Lawvere, Metric spaces, generalized logic and closed categories, Rend. Sem. Mat. Fis.
Univ. Milano 43 (1974), 135-166. ~ quasi-pseudo-metric:  J.C. Kelly, 1963.

- the category TMtr of directed metric spaces, with functors
fe: TMtr — Flw < TCs, X< X' o 8(X,Xx)<e
Tools

- directed homotopy at resolution € (0<e < o)
foX: directed simplicial complex
€ = (a,...a) isalinked wordin fX iff: i<j = a-<.a (O(a, a)<e)

apathin t.X "is" afinite sequence (ay,... &) with: d(a, a.1) <€

o TITE(X) = TI(fX): the fundamental category of X, at resolution e

o Tme(X, Xo) = TI1(feX)(Xo, Xo): the fundamental monoid at Xx,, at resolution ¢

References for these tools (new)

- Higher homotopy categories TIT,(K) of adirected simplicial set: [G3]
I, : 'Smp = n-Gpd : N, TI1, — N,
TIT, preserves al colimits,

- Compare with: directed paths in alocally ordered space: [FGR, GG].

Elementary models. Flow metric spaces (preordered metric spaces)

- metric space X with a flow relation x < x' (just reflexive)
= areflexive smple graph, with ametric on its set of vertices
- natural embedding
U: fMtr — TMtr, (X,d, <) — (X,5)
O(x, X) = inf {Zi=1  nd(Xi_s, Xi) | X=Xo= X1+ ... < X, =X}

- preordered case: < transitive
(X, X) = d(x, X)) if x<x'; = o otherwise



6. Applications to Directed Images

» a'flow image (modelled by a flow metric space)

] X () < ()
3% DIEEIS T
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1 B l s or (7<x,x'<11 & (x,y) <c (X,Y))
SEREEREEREER S AR TSR v SRS

e .
1 4 8 10

- =<c Isthe counter-clockwise flow relation around C (cf. below)
Calculations
- TME(X)(a b): larow (0<e<1)

IZIXIN|]  (1<e<?2)

1Z| (2<e<3)
{} (3<e <)
— Tre(X)(b, @): @ (0< g < oo)

Comments

- at resolution 0 < e < 1: one stream

- for 1<e <2 twoislands A, C, linked by a (broken) isthmus; the first in still
water, the second with a vortex around

- for 2<e<3: oneidand A; then, for € >3, no relevant island;

 Just fundamental monoids give insufficient information.

The counter-clockwise d-metric on TS! (the directed circle)

- derives from the geodetic metric and a flow relation x <. X' (0<e<n)
- different flow relations give the same d-metric
- good maps are just locally monotone

- flow relations are practically useful but theoretically unsatisfactory



7. Applications to Directed Images, continued

* An ordered image (modelled by an ordered metric space)

X, y) < (X,y) iff Jy'—y] < x'—x

Calculations
- TIE(Y)(a b): 3arows (0<e<1), 1 arow (1<g <o)

- TIEE(Z)(a, b): 4 arows (0<e<1), 1 arow (1<g <o)
MIE(Y)(b, &) = MEZ)(b, a) = @

Comments (at resolution 0<e < 1)

- two islands in a stream, at comparable levels (Y) or at different levels (Z)

Similar to the analysisin [FGR], fig. 14, for amodel of execution paths of concurrent automata.

« SPACE-TIME modelled by ordered metric spaces

- In the examples above:
X: time, y: positionin 1-dimensiona space
(x,y) < (X, y): onecangofrom (x,y) to (x',y"), with velocity <1
forbidden zones: obstaclesin the line, having alimited duration in time
Classical model, with fixed frame (" material rest frame") and bounded velocity

(Also: relativistic model with fixed observer.)



8. Chu-spaces, flow sets, directed homotopy // concurrent processes

Models
— Chu-spaces as models for concurrency: [Pr]
(Directed homotopy for other models (cubical sets, |.0. spaces): [Ga, FGR, GG])
C=(A,r, X): Chu-spaceon X ={-1,0, 1} = {—, 0, +}
representing a concurrent process [PR]
Aievents  X:dates r: AxX — X: the matrix
—, 0, +: past, present, future; or: unstarted, active, done
Tools
— the associated flow-set *(C) = (X, <1) (f*: Chugy — Flwor < TCs)
X=X & 0= r(ax)-rax) <1 (VaA)
o TII(C) = TIIy(X, <1): the fundamental category of C

Applications to concurrent processes

I. Thetrivial case: the free Chu-space F(A) on aset of events A

C=FA)=(A, ev, 2" eg. A={a b}
0—

_ 4= « —5 8 —> .

- — a NN

—ol 00 [+o | e s .

b ININ

_ ——— 4+ « — > e —> .
|ZA| = 32 states: the 9 faces of the square the flow set (X, <1)

Calculations
- TI(C)(x,y): ZLlarowif x<y  (r(u, X) < r(u, x), for u=a, b)

@ otherwise.

Comments

» for afree Chu-space on a set of events the fundamental category istrivial:

the order relation < generated by the flow <.



9. Applications to concurrent processes, continued

II. A non-trivial extensional case

C=(A,r X)

extensona: X c ZA (via r: X — XA, X =r(—, X))

I o iH<1
LA N

Calculations

— TI4(C)(—, ++): 2 arrows.

Comments

C hastwo homotopy classes of execution paths, from — to ++
- the path through the pure state +— (operate a, then b)
- the path through the pure state —+ (operate b, then a)

- they cannot be deformed one into the other,
since the state "operate a and b" ismissing (labelled 00 in previous case).

* Anextensiona (A, r, X) issculpted from the free object F(A),
taking out unwanted states from XA.

e TII(C) exploresaflow subset of the |A|-dimensional cube (Z*, <),
no longer homotopically trivial (possibly).



10. Ordinary and symmetric simplicial sets
and their cc-subcategories of simple presheaves

* Presheaves and simple presheaves
C = Setc® = category of presheaveson C (small category with terminal T)
apresheaf X issmpleif every item x € X(c) isdetermined by itsvertices i*(x) (i: T — ¢)
— Simple presheaves form a cc-subcategory of C

i.e.: afull reflective subcategory whose reflector preserves finite products

Freyd thm.: this subcategory is cartesian closed, with the same exponentials

e Cc-embeddings with their reflectors --- (forgetful functors)

f t

Flw £--- TCs Tol c--- Cs
cltu et cftu et
t t
Smp; «—_r—; Smp 1Smpq +—_r——, ISmp
cosk cosk
categories of presheaves simple presheaves therein
Smp: simplicia sets TCs: directed ssimplicial complexes
(presheaves on finite pos. ordinals) (sets with distinguished words)
Smpy: graphs (oriented, reflexive) Flw: flow sets (X, <) (= smplegraphs)
ISmp: symmetric simplicia sets Cs: simplicial complexes
(presheaves on finite pos. cardinals) (sets with distinguished subsets)
ISmp,: involutive graphs Tol: tolerance sets (X, !) (simp. inv. gph)

« Definition: cartesian closed embedding

X isacc-category; it A — X isafull reflective subcategory
with reflector p (p — i) which preserves binary products

* Freyd theorem (for cartesian closed embeddings)

— In these hypotheses, A iscartesian closed
with i(APX) = (iIA)X. In particular, i preserves exponentials: i(AB) = (iA)E.
(P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972), 1-76.)



