ORDINARY AND DIRECTED COMBINATORIAL HOMOTOPY FOR IMAGE ANALYSIS AND CONCURRENCY

Marco Grandis

Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16146-Genova, Italy e-mail: grandis@dima.unige.it http://www.dima.unige.it/~grandis/

Abstract. We deal with intrinsic homotopy and homology theories for **simplicial complexes** and *directed* **simplicial complexes**.

Some applications are aimed at **image analysis in metric spaces** and have connections with digital topology and mathematical morphology; the directed version is applied to **directed images** and mathematical models of **concurrency**.

Previous works referred here

[G1] M. Grandis, An intrinsic homotopy theory for simplicial complexes, with applications to image analysis, Appl. Categ. Structures, to appear. http://arxiv.org/abs/math.AT/0009166

[G2] M. Grandis, *Combinatorial homology and image analysis*, Dip. Mat. Univ. Genova, Preprint **394** (1999). http://www.dima.uniqe.it/~grandis/

[G3] M. Grandis, *Higher fundamental functors for simplicial sets*, Cahiers Top. Géom. Diff. Catég., to appear. http://arXiv.org/abs/math.AT/0009004

On simplicial complexes

[HW] P.J. Hilton - S. Wylie, *Homology theory*, Cambridge Univ. Press, Cambridge 1962.

[Sp] E.H. Spanier, Algebraic Topology, Mc Graw-Hill, New York 1966.

On digital topology

[KKM1] T.Y. Kong - R. Kopperman - P.R. Meyer, *A topological approach to digital topology*, Amer. Math. Monthly **98** (1991), 901-917.

[KKM2] T.Y. Kong - R. Kopperman - P.R. Meyer Eds., *Special issue on digital topology*, Topol. Appl. **46** (1992), no. 3, 173-303.

On mathematical morphology (e.g., dilation operators)

[FM] P. Frosini - M. Mulazzani, *Size homotopy groups for computation of natural size distances*, Bull. Belg. Math. Soc. Simon Stevin **6** (1999), 455-464.

[He] H.J.A.M. Heijmans, *Mathematical morphology: a modern approach in image processing based on algebra and geometry*, SIAM Rev. 37 (1995), 1-36.

On directed Algebraic Topology and concurrent processes

[FGR] L. Fajstrup - E. Goubault - M. Raussen, Algebraic topology and concurrency, Preprint 1999.

[Ga] P. Gaucher, *Homotopy invariants of higher dimensional categories and concurrency in computer science*, Math. Struct. in Comp. Science **10** (2000), 481-524.

[GG] P. Gaucher - E. Goubault, *Topological Deformation of Higher Dimensional Automata*, Preprint. http://www-irma.u-strasbg.fr/~gaucher/dicW.ps

[Pr] V. Pratt, *Higher dimensional automata revisited*, Math. Struct. in Comp. Science **10** (2000), 525-548.

1. Topological spaces, homotopy and homology // Images.

Topological Models for images (are not satisfactory)

- topological space X

Tools from classical Algebraic Topology

- $\pi_1(X, x_0)$: the **fundamental group** of X, at $x_0 \in X$
- $\Pi_1(X)$: the **fundamental groupoid** of X
- $H_1(X)$: the (singular) **homology group** of X, of degree 1

Applications to Images

"continuous image" $X \subset \mathbb{R}^2$

"discrete image" $X' = X \cap (\rho \mathbf{Z})^2$ (scanning at resolution $\rho = 1/2$)

Calculations

 $- \pi_1(\mathbf{X}, \mathbf{x}_0) \cong \mathbf{Z} * \mathbf{Z}$

 $- \pi_1(X', x_0) = 0$

- $H_1(X) \cong \mathbf{Z} \oplus \mathbf{Z}$

 $- \quad H_1(X') = 0$

- in fig. (a), homotopy and homology detect two "holes" (islands, basins,...)
- **but:** they ignore metric aspects
- but: in fig. (b), they give trivial information.

2. Metric spaces and simplicial complexes, combinatorial homotopy and homology

Metric Models for images (are better suited)

```
- metric space X \subset \mathbb{R}^2 (representing an image)

\mathbb{R}^2: d(x, y) = |x_1 - y_1| \lor |x_2 - y_2| (l_{\infty}-metric, or product metric)
```

Tools from Combinatorial Algebraic Topology (references below)

```
homotopy and homology at resolution \varepsilon (0 \le \varepsilon \le \infty)

t_{\varepsilon}X: simplicial complex \xi \subset X is linked iff: finite & diam(\xi) \le \varepsilon

a path in t_{\varepsilon}X "is" a finite sequence (a_1,...,a_p) with: d(a_i,a_{i+1}) \le \varepsilon

the path functor PX of simplicial complexes;

deformation of paths in P<sup>2</sup>X; combinatorial homotopies X \to PY

homotopical equivalence: t_1\mathbf{R} is contractible, by a telescopic homotopy
```

- $\pi_1^{\epsilon}(X, x_0) = \pi_1(t_{\epsilon}X, x_0)$: the fundamental group of X at x_0 , at resolution ϵ
- $\Pi_1^{\varepsilon}(X) = \Pi_1(t_{\varepsilon}X)$: the fundamental groupoid of X, at resolution ε
- $H_1^{\varepsilon}(X) = H_1(t_{\varepsilon}X)$: the (singular) 1-homology group of X, at resolution ε .

References for these tools (classical or new)

- Edge-path groupoid $\Pi_1(K)$ of a simplicial complex: Spanier [SP], 3.6
- Homology groups H_n(K) of a simplicial complex: [Sp], ch. 4; [HW], ch. 2
- **Higher homotopy groups** $\pi_n(K)$ of a (pointed) simplicial complex: [G1]
- intrinsic calculation of $\Pi_1(K)$, $\pi_1(K)$, by a "van Kampen" theorem and study of homotopies: [G1]
- **Higher homotopy groupoids** $\Pi_n(K)$ of a simplicial set: [G3]

```
\Pi_n: {}^{!}\mathbf{Smp} \ \Longleftrightarrow \ n\text{-}\mathbf{Gpd} : M_n \qquad \qquad \Pi_n \ \multimap \ M_n \Pi_n \ \text{preserves all colimits} \ (\mathbf{strong} \ \text{van Kampen property}).
```

3. Applications to Images

- at resolution $0 < \varepsilon < 1$: one single basin (or island...) (provided $\varepsilon \ge \rho$, for (b))
- 1 ≤ ε < 2: two basins A, C connected by a bridgeable channel B
 (or two islands connected by an isthmus, etc.)
 (B can be jumped over by paths)
- $2 \le \varepsilon < 3$: one basin A with a negligible appendix
- $\varepsilon \ge 3$: no relevant basin at all.
- The choice of the resolution(s) of interest may be dictated by applications (e.g.: thresholds) but the finest description has been obtained at an intermediate resolution $(1 \le \varepsilon < 2)$.
- The whole analysis, varying ε , is of interest. Critical values: 0, 1, 2, 3.

4. Applications to Images, continued

$$\mathbf{R}^2$$
: $d(x, y) = |x_1 - y_1| \vee |x_2 - y_2|$

 $(l_{\infty}$ -metric, or product metric)

-
$$\pi_1^{\epsilon}$$
: \mathbf{Z} $(1 \le \epsilon < 8)$, $\{*\}$ $(\epsilon \ge 8)$,

$$\mathbf{Z} * \mathbf{Z} \ (1 \le \varepsilon < 8)$$

 $\{*\} \quad (\varepsilon \ge 8),$

$$-\pi_1^{\varepsilon}$$
: \mathbf{Z} $(1 \leq \varepsilon < 2)$

$$\mathbf{Z}$$
 $(1 \le \varepsilon < 2),$ $\mathbf{Z} * \mathbf{Z}$ $(2 \le \varepsilon < 8),$

$$\{*\}\ (\epsilon \geq 8).$$

- a small resolution is sensitive to "errors"
- the "best" description is obtained at an intermediate resolution $(2 \le \varepsilon < 8)$

5. Directed metric spaces, directed homotopy

Metric Models for directed images

- a directed metric space X (= a Lawvere generalised metric space [La])

d-metric
$$\delta: X \times X \rightarrow [0, \infty]$$

$$\delta(x, x) = 0, \quad \delta(x, y) + \delta(y, z) \ge \delta(x, z)$$

(X is a small category enriched over a suitable monoidal category with objects $t \in [0, \infty]$)

F.W. Lawvere, *Metric spaces, generalized logic and closed categories*, Rend. Sem. Mat. Fis. Univ. Milano **43** (1974), 135-166. — quasi-pseudo-metric: J.C. Kelly, 1963.

- the category \(^1\)Mtr of directed metric spaces, with functors

$$f_{\varepsilon}$$
: $\uparrow Mtr \rightarrow Flw \subset \uparrow Cs$,

$$x \prec_{\varepsilon} x' \iff \delta(x, x') \leq \varepsilon$$

Tools

- **directed homotopy** at resolution ε $(0 \le \varepsilon \le \infty)$

f_EX: directed simplicial complex

$$\xi = (a_1, ..., a_p)$$
 is a linked word in $f_{\epsilon}X$ iff: $i \le j \implies a_i \le a_j \quad (\delta(a_i, a_j) \le \epsilon)$

a path in $t_{\epsilon}X$ "is" a finite sequence $(a_1,...,a_p)$ with: $\delta(a_i,a_{i+1}) \leq \epsilon$

- $\uparrow \Pi_1^{\varepsilon}(X) = \uparrow \Pi_1(f_{\varepsilon}X)$: the fundamental *category* of X, at resolution ε
- $\uparrow \pi_1^{\epsilon}(X, x_0) = \uparrow \Pi_1(f_{\epsilon}X)(x_0, x_0)$: the fundamental monoid at x_0 , at resolution ϵ

References for these tools (new)

- **Higher homotopy categories** $\uparrow \Pi_n(K)$ of a directed simplicial set: [G3]

$$\uparrow \Pi_n : !\mathbf{Smp} \iff n\text{-}\mathbf{Gpd} : N_n \qquad \qquad \uparrow \Pi_n \multimap N_n$$

 $\uparrow \Pi_n \text{ preserves all colimits.}$

- Compare with: directed paths in a locally ordered space: [FGR, GG].

Elementary models: Flow metric spaces (preordered metric spaces)

- metric space X with a flow relation x < x' (just reflexive)
 - = a reflexive simple graph, with a metric on its set of vertices
- natural embedding

- preordered case: ≺ transitive

$$\delta(x, x') = d(x, x')$$
 if $x \le x'$; $= \infty$ otherwise

6. Applications to Directed Images

• a 'flow image' (modelled by a flow metric space)

- \prec_{C} is the counter-clockwise flow relation around C (cf. below)

Calculations

Comments

- at resolution $0 < \varepsilon < 1$: one stream
- for $1 \le \varepsilon < 2$: two islands A, C, linked by a (broken) isthmus; the first in still water, the second with a vortex around
- for $2 \le \varepsilon < 3$: one island A; then, for $\varepsilon \ge 3$, no relevant island;
- Just fundamental **monoids** give insufficient information.

The counter-clockwise d-metric on $\uparrow S^1$ (the directed circle)

- derives from the geodetic metric and a flow relation $x \prec_{\varepsilon} x'$ $(0 < \varepsilon \leq \pi)$
 - different flow relations give the same d-metric
 - good maps are just locally monotone
 - flow relations are practically useful but theoretically unsatisfactory

7. Applications to Directed Images, continued

• An ordered image (modelled by an ordered metric space)

$$(x, y) \prec (x', y')$$
 iff $|y' - y| \le x' - x$

Calculations

- ↑Π₁ε(Y)(a, b): 3 arrows (0 < ε < 1), 1 arrow (1 ≤ ε < ∞)
- ↑Π₁ε(Z)(a, b): 4 arrows (0 < ε < 1), 1 arrow (1 ≤ ε < ∞) ↑Π₁ε(Y)(b, a) = ↑Π₁ε(Z)(b, a) = Ø

Comments (at resolution $0 < \varepsilon < 1$)

- two islands in a stream, at *comparable* levels (Y) or at *different* levels (Z)

 Similar to the analysis in [FGR], fig. 14, for a model of execution paths of concurrent automata.
- SPACE-TIME modelled by ordered metric spaces
- In the examples above:

x: time, y: position in 1-dimensional space

 $(x, y) \prec (x', y')$: one can go from (x, y) to (x', y'), with velocity ≤ 1

forbidden zones: obstacles in the line, having a limited duration in time

Classical model, with fixed frame ("material rest frame") and bounded velocity (Also: relativistic model with fixed observer.)

8. Chu-spaces, flow sets, directed homotopy // concurrent processes

Models

- **Chu-spaces** as models for concurrency: [Pr]

(Directed homotopy for other models (cubical sets, l.o. spaces): [Ga, FGR, GG])

C = (A, r, X): Chu-space on
$$\Sigma = \{-1, 0, 1\} = \{-, 0, +\}$$
 representing a concurrent process [PR]

A: events
$$X$$
: states r : $A \times X \to \Sigma$: the matrix $-$, 0 , $+$: past, present, future; or: unstarted, active, done

Tools

- the associated flow-set $f^*(C) = (X, \prec_1)$ $(f^*: \mathbf{Chu}_{\Sigma} \to \mathbf{Flw}^{op} \subset {}^{\uparrow}\mathbf{Cs}^{op})$ $x \prec_1 x' \iff 0 \leq r(a, x') r(a, x) \leq 1 \ (\forall a \in A)$
- $\uparrow \Pi_1(C) = \uparrow \Pi_1(X, \prec_1)$: the fundamental *category* of C

Applications to concurrent processes

 $C = F(A) = (A, ev, \Sigma^A)$

I. The trivial case: the free Chu-space F(A) on a set of events A

 $|\Sigma^A| = 3^2$ states: the 9 faces of the square the flow set (X, \prec_1)

e.g. $A = \{a, b\}$

Calculations

$$\uparrow \Pi_1(C)(x, y)$$
: 1 arrow if $x \le y$ $(r(u, x) \le r(u, x'), \text{ for } u = a, b)$ \emptyset otherwise.

Comments

• for a **free** Chu-space on a set of events the fundamental category is trivial: the order relation ≤ generated by the flow ≺₁.

9. Applications to concurrent processes, continued

II. A non-trivial extensional case

Calculations

 $- \uparrow \Pi_1(C)(--, ++)$: 2 arrows.

- C has **two** homotopy classes of execution paths, from -- to ++
 - the path through the pure state +- (operate a, then b)
 - the path through the pure state -+ (*operate* b, *then* a)
- they cannot be deformed one into the other, since the state "*operate* a *and* b" is missing (labelled 00 in previous case).
- An extensional (A, r, X) is *sculpted* from the free object F(A), taking out unwanted states from Σ^A .
- $\uparrow \Pi_1(C)$ explores a flow subset of the |A|-dimensional cube (Σ^A, \prec_1) , no longer homotopically trivial (possibly).

- 10. Ordinary and symmetric simplicial sets and their cc-subcategories of simple presheaves
- Presheaves and simple presheaves

 $\hat{\mathbf{C}} = \mathbf{Set}^{\mathbf{Cop}} = \text{category of presheaves on } \mathbf{C} \text{ (small category with terminal T)}$ a presheaf X is simple if every item $\mathbf{x} \in \mathbf{X}(\mathbf{c})$ is determined by its vertices $\mathbf{i}^*(\mathbf{x})$ (i: $\mathsf{T} \to \mathbf{c}$)

Simple presheaves form a cc-subcategory of Ĉ
 i.e.: a full reflective subcategory whose reflector preserves finite products

Freyd thm.: this subcategory is cartesian closed, with the same exponentials

• Cc-embeddings with their reflectors --→ (forgetful functors)

categories of presheaves

Smp: simplicial sets

(presheaves on finite pos. ordinals)

Smp₁: graphs (oriented, reflexive)

!Smp: symmetric simplicial sets (presheaves on finite pos. cardinals)

!Smp₁: involutive graphs

simple presheaves therein

↑Cs: directed simplicial complexes (sets with distinguished words)

Flw: flow sets (X, \prec) (= simple graphs)

Cs: simplicial complexes

(sets with distinguished subsets)

Tol: tolerance sets (X, !) (simp. inv. gph)

· Definition: cartesian closed embedding

X is a **cc-category**; i: $A \rightarrow X$ is a full reflective subcategory with reflector p (p - i) which preserves binary products

- Freyd theorem (for cartesian closed embeddings)
- In these hypotheses, A is cartesian closed
 with i(A^{pX}) = (iA)^X. In particular, i preserves exponentials: i(A^B) = (iA)^{iB}.
 (P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972), 1-76.)